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The paper explores a mathematical model for suspension filtration in a porous
medium, incorporating a mass balance equation for suspended particles and kinetic equa-
tions for both irreversible and reversible particle deposition. An inverse problem was
formulated and solved numerically to determine four parameters of the model at once.
Four parameters to find: the diffusion coefficient in the mass balance equation, deposition
rate coefficients in the kinetic equations of both active and passive zones and reversible
deposition re-entrainment coefficient. A first-order identification method was used for
this purpose. The results show that when the initial approximations are close to the
exact values of given parameters, the parameters are recovered with a small number of
iterations. When the initial approximations deviate slightly from the given values, the
number of iterations required to recover the parameters increases, but the coefficients
are recovered with a sufficiently small error. It was found that when the initial approxi-
mations of the parameters are sufficiently far from the exact values of given parameters,
the first-order identification method does not give good results, and the iterative process
becomes divergent. In this case, a modified identification method using regularization
was used to recover the parameters, and the parameters were recovered with sufficient
accuracy. Taking into account that a large amount of calculations are performed during
the inverse problem, a parallel algorithm was proposed for processing this problem. It
was found that the program based on the parallelized algorithm works significantly faster
than the original program.
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1 Introduction
Waterflooding is a predominant method for global oil production, involving the in-

jection of water into certain wells and the extraction of oil from others [1]. However,
the injection of untreated water, containing various organic and mineral additives, has
been observed to diminish the water-bearing capacity of the reservoir [2]. Introducing
low-quality water into wells during waterflooding diminishes permeability due to the
entrapment of suspended particles, forming deposits as the liquid traverses the porous
medium [3].

In the realm of mathematical models for filtration processes, functions describing the
properties of the porous medium or the fluid in which the flow occurs are integral [2].
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Various authors have developed methods for indirectly recovering crucial parameters,
such as pressure or flow velocity, from laboratory measurements in flow experiments [4–
7]. These approaches give rise to inverse problems in mathematical physics within the
realm of parameter identification theory, presenting challenges as ill-conditioned linear
and nonlinear optimization problems. To address these challenges, regularization methods
prove valuable, ensuring the stability of approximate solutions [6, 7].

While the direct problems related to solute transport in porous media have received
considerable attention, the inverse problems, even for the simplest models, remain inade-
quately explored [8]. This article delves into the inverse problem of identifying parameters
in models of inhomogeneous fluid filtration within porous media.

Flow of water containing suspended particles through porous media, cause the deposi-
tion of particles, leading to a reduction in medium permeability. This phenomenon known
as deep bed filtration. Deep bed filtration play crucial roles in various petroleum-related
applications, such as controlling sand production, managing fines migration, disposing of
produced water in aquifers, and implementing deep bed filtration in gravel packs. Parti-
cle suspension filtration is not limited to petroleum applications; it occurs in industrial
water filtering, the propagation of contaminants (including viruses and bacteria) through
aquifers, and various environmental processes. Deep bed filtration of particle suspen-
sions in porous media takes place during activities like water injection into oil reservoirs,
drilling fluid invasion of reservoir production zones, fines migration in oil fields, industrial
filtering, and the transport of bacteria, viruses, or contaminants in groundwater.

2 Problem formulation
Let we consider a layer with length 𝐿 and initial porosity 𝑚0 filled with a homogeneous

liquid. From 𝑡 > 0 to 𝑡 ⩽ 𝑡1 at the point 𝑥 = 0 the inhomogeneous liquid containing
suspended solid particles with concentration 𝑐0 starts injecting to the layer with the
constant filtration velocity 𝑈 .

Suspension filtration occurs in porous media with active and passive zones, which
means deposition formation, have reversible and irreversible forms, respectively. In this
case, mathematical model of the process consists of mass balance equation and kinetic
equations for both zones [9, 10]
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+
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= 𝛽𝑝𝑐, (3)

where 𝑐 is concentration of suspended particles in the fluid, 𝑑𝑚 is the bulk density, 𝑚 is
the porosity, 𝜌𝑎 and 𝜌𝑝 are deposited particle concentration in active and passive zones,
respectively, 𝐷𝐿 is diffusion coefficient, 𝛽𝑎 is reversible deposition rate coefficient, 𝛽𝑑 is re-
versible deposition re-entrainment coefficient, 𝛽𝑝 is irreversible deposition rate coefficient,
𝑥 is the coordinate.

Initial and boundary conditions are following

𝑐(𝑥, 0) = 0, 𝜌𝑎(𝑥, 0) = 𝜌𝑝(𝑥, 0) = 0, (4)

𝑐(0, 𝑡) =

{︂
𝑐0, 0 ⩽ 𝑡 ⩽ 𝑡1,
0, 𝑡 > 𝑡1,

𝜕𝑐
𝜕𝑡

⃒⃒
𝑥=𝐿

= 0.
(5)
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The problem (1)-(5) corresponds to the direct statement. With known all coefficients
in (1)-(3) and as well as 𝑐0 in (5), the solutions 𝑐, 𝜌𝑎, 𝜌𝑝. When solving the coefficient
inverse problem, some coefficients in (1)-(3) are unknown and must be determined. In this
paper we consider an inverse problem, which consists of determining the coefficients 𝐷𝐿,
𝛽𝑎, 𝛽𝑑, 𝛽𝑝 in equations (1)-(3). This requires additional information about the solution
of the direct problem. To do this, we solve the direct problem with known values of the
parameters. As additional information we use values of the effluent suspended particles
concentration in 𝑛 different time points, which we denote as 𝑧(𝑡𝑗), where

𝑐(𝐿, 𝑡𝑗) = 𝑧(𝑡𝑗), 𝑗 = 1, 𝑛, (6)

where 𝑛 is number of selected points of time.

3 Solution of the problem

3.1 Solution of the direct problem
To solve the direct problem (1)-(5), we use finite difference method. In the area

𝐷 = {0 ⩽ 𝑥 ⩽ 𝐿, 0 ⩽ 𝑡 ⩽ 𝑇}, we consider the net

𝜔ℎ𝜏 = {(𝑥𝑘, 𝑡𝑗) , 𝑥𝑘 = 𝑘ℎ, 𝑘 = 0, 1, ..., 𝐾, ℎ = 𝐿/𝐾, 𝑡𝑗 = 𝑗𝜏, 𝑗 = 0, 1, ..., 𝐽, 𝜏 = 𝑇/𝐽} .

Instead of functions 𝑐 (𝑡, 𝑥), 𝜌𝑎 (𝑡, 𝑥), 𝜌𝑝 (𝑡, 𝑥), we consider grid functions, whose values
at the nodes (𝑥𝑘, 𝑡𝑗) are denoted by (𝑐)𝑗𝑘, (𝜌𝑎)

𝑗
𝑘, (𝜌𝑝)

𝑗
𝑘, respectively.

Difference scheme for the equation (2) is
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. (7)

For equation (3) we have
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𝑚
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The balance equations(1) is approximated by the equations
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+ 𝑈
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𝑚
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𝑑𝑚
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ℎ2
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We also approximate initial and boundary conditions (4), (5)

𝑐0𝑖 = 0, 𝜌0𝑎,𝑖 = 𝜌0𝑝,𝑖 = 0, 𝑖 = 0, 𝐼, (10)

𝑐𝑗0 =

{︂
𝑐0, 0 ⩽ 𝑡𝑗 ⩽ 𝑡1,
0, 𝑡𝑗 > 𝑡1,
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𝑐𝑗𝑁 = 𝑐𝑗𝑁−1, 𝑗 = 0, 𝐽. (11)

We transform the scheme (9) to obtain the following system of linear equations

𝐴𝑐𝑗+1
𝑖−1 − 𝐶𝑐𝑗+1

𝑖 +𝐵𝑐𝑗+1
𝑖+1 = −𝐹 𝑗

𝑖 , (12)

where
𝐴 =

𝐷𝜏

ℎ2
+

𝑈𝜏

ℎ
, 𝐶 =

2𝐷𝜏

ℎ2
+

𝑈𝜏

ℎ
+ 1,

𝐵 =
𝐷𝜏

ℎ2
, 𝐹 𝑗

𝑖 = 𝑐𝑗𝑖 −
𝑑𝑚
𝑚

(︀
𝜌𝑗+1
𝑎,𝑖 − 𝜌𝑗𝑎,𝑖

)︀
− 𝑑𝑚

𝑚

(︀
𝜌𝑗+1
𝑝,𝑖 − 𝜌𝑗𝑝,𝑖

)︀
.

We solve (12) by the tridiagonal matrix algorithm (Thomas’ algorithm)

𝑐𝑗+1
𝑖 = 𝛼𝑖+1𝑐

𝑗+1
𝑖+1 + 𝛽𝑖+1, (13)

where

𝛼𝑖+1 =
𝐵

𝐶 − 𝐴𝛼𝑖

, 𝛽𝑖+1 =
𝐴𝛽𝑖 + 𝐹 𝑗

𝑖

𝐶 − 𝐴𝛼𝑖

.

3.2 Solution of the inverse problem
In this section we consider an inverse problem, which consists of determining the

coefficients 𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝 in equations (1)-(3), with given additional information (6).
We determine these coefficients by minimizing the following functional

Φ (𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝) =

∫︁ 𝑇

0

[𝑐 (𝐿, 𝑡)− 𝑧 (𝑡)]2 𝑑𝑡. (14)

The stationarity condition of the functional (14) is as follows [8, 11-14]

𝑑Φ (𝛾)

𝑑𝛾
= 2

∫︁ 𝑇

0

[𝑐 (𝐿, 𝑡)− 𝑧𝑙 (𝑡)]𝑤 (𝐿, 𝑡) 𝑑𝑡 = 0, (15)

where 𝑤 is vector column, 𝛾 is row vector and

𝑤 =
𝑑𝑐

𝑑𝛾
= (𝑤11, 𝑤12, 𝑤13, 𝑤14)

𝑇 , 𝛾 = (𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝) . (16)

We expand the function 𝑐 (𝑥, 𝑡) in a neighborhood of 𝛾𝑠 (here and other places of the
text s is number of iteration) up to second-order terms [11]

𝑐𝑠+1 (𝑥, 𝑡) ≈ 𝑐𝑠 (𝑥, 𝑡) +
(︀
𝛾𝑠+1 − 𝛾𝑠

)︀
· 𝑤𝑠 (𝑥, 𝑡) . (17)

Substituting (17) to (14), we get following equation with respect to
𝐷𝑠+1

𝐿 , 𝛽𝑠+1
𝑎 , 𝛽𝑠+1

𝑑 , 𝛽𝑠+1
𝑝⎧⎪⎪⎨⎪⎪⎩
𝑎11𝐷

𝑠+1
𝐿 + 𝑎12𝛽

𝑠+1
𝑎 + 𝑎13𝛽

𝑠+1
𝑑 + 𝑎14𝛽

𝑠+1
𝑝 = 𝑏1,

𝑎21𝐷
𝑠+1
𝐿 + 𝑎22𝛽

𝑠+1
𝑎 + 𝑎23𝛽

𝑠+1
𝑑 + 𝑎24𝛽

𝑠+1
𝑝 = 𝑏2,

𝑎31𝐷
𝑠+1
𝐿 + 𝑎32𝛽

𝑠+1
𝑎 + 𝑎33𝛽

𝑠+1
𝑑 + 𝑎34𝛽

𝑠+1
𝑝 = 𝑏3,

𝑎41𝐷
𝑠+1
𝐿 + 𝑎42𝛽

𝑠+1
𝑎 + 𝑎43𝛽

𝑠+1
𝑑 + 𝑎44𝛽

𝑠+1
𝑝 = 𝑏4,

(18)

where

𝑎11 =

∫︁ 𝑇

0

(𝑤𝑠
11(𝐿, 𝑡))

2 𝑑𝑡, 𝑎22 =

∫︁ 𝑇

0

(𝑤𝑠
12(𝐿, 𝑡))

2 𝑑𝑡,
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𝑎33 =

∫︁ 𝑇

0

(𝑤𝑠
13(𝐿, 𝑡))

2 𝑑𝑡, 𝑎44 =

∫︁ 𝑇

0

(𝑤𝑠
14(𝐿, 𝑡))

2 𝑑𝑡,

𝑎12 = 𝑎21 =

∫︁ 𝑇

0

𝑤𝑠
11 (𝐿, 𝑡) · 𝑤𝑠

12 (𝐿, 𝑡) 𝑑𝑡, 𝑎13 = 𝑎31 =

∫︁ 𝑇

0

𝑤𝑠
11 (𝐿, 𝑡) · 𝑤𝑠

13 (𝐿, 𝑡) 𝑑𝑡,

𝑎23 = 𝑎32 =

∫︁ 𝑇

0

𝑤𝑠
12 (𝐿, 𝑡) · 𝑤𝑠

13 (𝐿, 𝑡) 𝑑𝑡, 𝑎14 = 𝑎41 =

∫︁ 𝑇

0

𝑤𝑠
11 (𝐿, 𝑡) · 𝑤𝑠

14 (𝐿, 𝑡) 𝑑𝑡,

𝑎24 = 𝑎42 =

∫︁ 𝑇

0

𝑤𝑠
12 (𝐿, 𝑡) · 𝑤𝑠

14 (𝐿, 𝑡) 𝑑𝑡, 𝑎34 = 𝑎43 =

∫︁ 𝑇

0

𝑤𝑠
13 (𝐿, 𝑡) · 𝑤𝑠

14 (𝐿, 𝑡) 𝑑𝑡, (19)

𝑏1 =

∫︁ 𝑇

0

[︀
𝑤𝑠

11 (𝐿, 𝑡)𝐷
𝑠
𝐿 + 𝑤𝑠

12 (𝐿, 𝑡) 𝛽
𝑠
𝑎 + 𝑤𝑠

13 (𝐿, 𝑡) 𝛽
𝑠
𝑑 + 𝑤𝑠

14 (𝐿, 𝑡) 𝛽
𝑠
𝑝 − 𝑐𝑠 (𝐿, 𝑡) + 𝑧 (𝑡)

]︀
𝑤𝑠

11 (𝐿, 𝑡) 𝑑𝑡,

𝑏2 =

∫︁ 𝑇

0

[︀
𝑤𝑠

11 (𝐿, 𝑡)𝐷
𝑠
𝐿 + 𝑤𝑠

12 (𝐿, 𝑡) 𝛽
𝑠
𝑎 + 𝑤𝑠

13 (𝐿, 𝑡) 𝛽
𝑠
𝑑 + 𝑤𝑠

14 (𝐿, 𝑡) 𝛽
𝑠
𝑝 − 𝑐𝑠 (𝐿, 𝑡) + 𝑧 (𝑡)

]︀
𝑤𝑠

12 (𝐿, 𝑡) 𝑑𝑡,

𝑏3 =

∫︁ 𝑇

0

[︀
𝑤𝑠

11 (𝐿, 𝑡)𝐷
𝑠
𝐿 + 𝑤𝑠

12 (𝐿, 𝑡) 𝛽
𝑠
𝑎 + 𝑤𝑠

13 (𝐿, 𝑡) 𝛽
𝑠
𝑑 + 𝑤𝑠

14 (𝐿, 𝑡) 𝛽
𝑠
𝑝 − 𝑐𝑠 (𝐿, 𝑡) + 𝑧 (𝑡)

]︀
𝑤𝑠

13 (𝐿, 𝑡) 𝑑𝑡,

𝑏4 =

∫︁ 𝑇

0

[︀
𝑤𝑠

11 (𝐿, 𝑡)𝐷
𝑠
𝐿 + 𝑤𝑠

12 (𝐿, 𝑡) 𝛽
𝑠
𝑎 + 𝑤𝑠

13 (𝐿, 𝑡) 𝛽
𝑠
𝑑 + 𝑤𝑠

14 (𝐿, 𝑡) 𝛽
𝑠
𝑝 − 𝑐𝑠 (𝐿, 𝑡) + 𝑧 (𝑡)

]︀
𝑤𝑠

14 (𝐿, 𝑡) 𝑑𝑡.

Further approximations of 𝐷𝑠+1
𝐿 , 𝛽𝑠+1

𝑎 , 𝛽𝑠+1
𝑑 , 𝛽𝑠+1

𝑝 can be found by solving the sys-
tem, we apply Cramer’s rule to it

𝐷𝑠+1
𝐿 =

Δ𝐷𝐿

Δ
, 𝛽𝑠+1

𝑎 =
Δ𝛽𝑎

Δ
, 𝛽𝑠+1

𝑑 =
Δ𝛽𝑑

Δ
, 𝛽𝑠+1

𝑝 =
Δ𝛽𝑝

Δ
, (20)

where

Δ =

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

⃒⃒⃒⃒
⃒⃒⃒⃒ , Δ𝐷𝐿

=

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑏1 𝑎12 𝑎13 𝑎14
𝑏2 𝑎22 𝑎23 𝑎24
𝑏3 𝑎32 𝑎33 𝑎34
𝑏4 𝑎42 𝑎43 𝑎44

⃒⃒⃒⃒
⃒⃒⃒⃒ , Δ𝛽𝑎 =

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑎11 𝑏1 𝑎13 𝑎14
𝑎21 𝑏2 𝑎23 𝑎24
𝑎31 𝑏3 𝑎33 𝑎34
𝑎41 𝑏4 𝑎43 𝑎44

⃒⃒⃒⃒
⃒⃒⃒⃒ ,

Δ𝛽𝑑
=

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑎11 𝑎12 𝑏1 𝑎14
𝑎21 𝑎22 𝑏2 𝑎24
𝑎31 𝑎32 𝑏3 𝑎34
𝑎41 𝑎42 𝑏4 𝑎44

⃒⃒⃒⃒
⃒⃒⃒⃒ , Δ𝛽𝑝 =

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑎11 𝑎12 𝑎13 𝑏1
𝑎21 𝑎22 𝑎23 𝑏2
𝑎31 𝑎32 𝑎33 𝑏3
𝑎41 𝑎42 𝑎43 𝑏4

⃒⃒⃒⃒
⃒⃒⃒⃒ .

We differentiate (1)-(5) with respect to 𝐷𝐿

𝜕𝑤11

𝜕𝑡
+ 𝑈

𝜕𝑤11

𝜕𝑥
+

𝑑𝑚
𝑚

𝜕𝑤21

𝜕𝑡
+

𝑑𝑚
𝑚

𝜕𝑤31

𝜕𝑡
= 𝐷𝐿

𝜕2𝑤11

𝜕𝑥2
+

𝜕2𝑐

𝜕𝑥2
, (21)

𝑑𝑚
𝑚

𝜕𝑤21

𝜕𝑡
= 𝛽𝑎𝑤11 − 𝛽𝑑

𝑑𝑚
𝑚

𝑤21, (22)
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𝑑𝑚
𝑚

𝜕𝑤31

𝜕𝑡
= 𝛽𝑝𝑤11, (23)

𝑤11(𝑥, 0) = 𝑤21(𝑥, 0) = 𝑤31(𝑥, 0) = 0, (24)

𝑤11 (0, 𝑡) = 0,
𝜕𝑤11

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿

= 0, (25)

where 𝑤11 =
𝜕𝑐

𝜕𝐷𝐿
, 𝑤21 =

𝜕𝜌𝑎
𝜕𝐷𝐿

, 𝑤31 =
𝜕𝜌𝑝
𝜕𝐷𝐿

are sensitivity functions with respect to 𝐷𝐿.
We differentiate (1)-(5) with respect to 𝛽𝑎 and get following

𝜕𝑤12

𝜕𝑡
+ 𝑈

𝜕𝑤12

𝜕𝑥
+

𝑑𝑚
𝑚

𝜕𝑤22

𝜕𝑡
+

𝑑𝑚
𝑚

𝜕𝑤32

𝜕𝑡
= 𝐷𝐿

𝜕2𝑤12

𝜕𝑥2
, (26)

𝑑𝑚
𝑚

𝜕𝑤22

𝜕𝑡
= 𝛽𝑎𝑤12 − 𝛽𝑑

𝑑𝑚
𝑚

𝑤22 + 𝑐, (27)

𝑑𝑚
𝑚

𝜕𝑤32

𝜕𝑡
= 𝛽𝑝𝑤12, (28)

𝑤12(𝑥, 0) = 𝑤22(𝑥, 0) = 𝑤32(𝑥, 0) = 0, (29)

𝑤12 (0, 𝑡) = 0,
𝜕𝑤12

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿

= 0, (30)

where 𝑤12 =
𝜕𝑐
𝜕𝛽𝑎

, 𝑤22 =
𝜕𝜌𝑎
𝜕𝛽𝑎

, 𝑤32 =
𝜕𝜌𝑝
𝜕𝛽𝑎

are sensitivity functions with respect to 𝛽𝑎.
Then we differentiate (1)-(5) with respect to 𝛽𝑑 and obtain following

𝜕𝑤13

𝜕𝑡
+ 𝑈

𝜕𝑤13

𝜕𝑥
+

𝑑𝑚
𝑚

𝜕𝑤23

𝜕𝑡
+

𝑑𝑚
𝑚

𝜕𝑤33

𝜕𝑡
= 𝐷𝐿

𝜕2𝑤13

𝜕𝑥2
, (31)

𝑑𝑚
𝑚

𝜕𝑤23

𝜕𝑡
= 𝛽𝑎𝑤13 − 𝛽𝑑

𝑑𝑚
𝑚

𝑤23 −
𝑑𝑚
𝑚

𝜌𝑎, (32)

𝑑𝑚
𝑚

𝜕𝑤33

𝜕𝑡
= 𝛽𝑝𝑤13, (33)

𝑤13(𝑥, 0) = 𝑤23(𝑥, 0) = 𝑤33(𝑥, 0) = 0, (34)

𝑤13 (0, 𝑡) = 0,
𝜕𝑤13

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿

= 0. (35)

where 𝑤13 =
𝜕𝑐
𝜕𝛽𝑑

, 𝑤23 =
𝜕𝜌𝑎
𝜕𝛽𝑑

, 𝑤33 =
𝜕𝜌𝑝
𝜕𝛽𝑑

are sensitivity functions with respect to 𝛽𝑑.
Finally we differentiate (1)-(5) with respect to 𝛽𝑝

𝜕𝑤14

𝜕𝑡
+ 𝑈

𝜕𝑤14

𝜕𝑥
+

𝑑𝑚
𝑚

𝜕𝑤24

𝜕𝑡
+

𝑑𝑚
𝑚

𝜕𝑤34

𝜕𝑡
= 𝐷𝐿

𝜕2𝑤14

𝜕𝑥2
, (36)

𝑑𝑚
𝑚

𝜕𝑤24

𝜕𝑡
= 𝛽𝑎𝑤14 − 𝛽𝑑

𝑑𝑚
𝑚

𝑤24, (37)

𝑑𝑚
𝑚

𝜕𝑤34

𝜕𝑡
= 𝛽𝑝𝑤14 + 𝑐, (38)

𝑤14(𝑥, 0) = 𝑤24(𝑥, 0) = 𝑤34(𝑥, 0) = 0, (39)

𝑤14 (0, 𝑡) = 0,
𝜕𝑤14

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿

= 0. (40)

The algorithm for determining coefficients 𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝 is as following:
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1. We choose initial values of 𝐷𝐿 = 𝐷0
𝐿, 𝛽𝑎 = 𝛽0

𝑎, 𝛽𝑑 = 𝛽0
𝑑 va 𝛽𝑝 = 𝛽0

𝑝 (initially 𝑠 = 0).
2. We solve problems (1)-(5), (21)-(25), (26)-(30), (31)-(35) and (36)-(40) from 𝑡 = 0 to
𝑡 = 𝑇 and determine functions 𝑐𝑠 (𝑥, 𝑡), 𝜌𝑠𝑎 (𝑥, 𝑡), 𝜌𝑠𝑝 (𝑥, 𝑡), 𝑤𝑠

11 (𝑥, 𝑡), 𝑤𝑠
21 (𝑥, 𝑡), 𝑤𝑠

31 (𝑥, 𝑡),
𝑤𝑠

12 (𝑥, 𝑡), 𝑤𝑠
22 (𝑥, 𝑡), 𝑤𝑠

32 (𝑥, 𝑡), 𝑤𝑠
13 (𝑥, 𝑡), 𝑤𝑠

23 (𝑥, 𝑡), 𝑤𝑠
33 (𝑥, 𝑡), 𝑤𝑠

14 (𝑥, 𝑡), 𝑤𝑠
24 (𝑥, 𝑡), 𝑤𝑠

34 (𝑥, 𝑡).
3. We solve system of equations (18)-(20) and determine 𝐷𝑠+1

𝐿 , 𝛽𝑠+1
𝑎 , 𝛽𝑠+1

𝑑 , 𝛽𝑠+1
𝑝 .

4.𝑠 = 𝑠+ 1, 𝐷𝐿 = 𝐷𝑠+1
𝐿 , 𝛽𝑎 = 𝛽𝑠+1

𝑎 , 𝛽𝑑 = 𝛽𝑠+1
𝑑 , 𝛽𝑝 = 𝛽𝑠+1

𝑝 .

5. Repeat steps 2), 3), 4) until following conditions are satisfied

⃒⃒⃒⃒
Φ𝑠+1 − Φ𝑠

Φ𝑠

⃒⃒⃒⃒
⩽ 𝜀;

⃒⃒⃒⃒
𝐷𝑠+1

𝐿 −𝐷𝑠
𝐿

𝐷𝑠
𝐿

⃒⃒⃒⃒
⩽ 𝜀1;

⃒⃒⃒⃒
𝛽𝑠+1
𝑎 − 𝛽𝑠

𝑎

𝛽𝑠
𝑎

⃒⃒⃒⃒
⩽ 𝜀2;

⃒⃒⃒⃒
𝛽𝑠+1
𝑑 − 𝛽𝑠

𝑑

𝛽𝑠
𝑑

⃒⃒⃒⃒
⩽ 𝜀3;

⃒⃒⃒⃒
𝛽𝑠+1
𝑝 − 𝛽𝑠

𝑝

𝛽𝑠
𝑝

⃒⃒⃒⃒
⩽ 𝜀3.

where 𝜀, 𝜀1, 𝜀2, 𝜀3 are fairly small values representing the accuracy of the solution.

3.3 Parallel algorithm for solving the inverse problem

In this paragraph, we consider the possibilities of using parallel computing algorithms
in determining the parameters of the suspension filtration model based on multi-stage
kinetics in porous media.

It should be noted, that parallel computing is a calculation that can be performed
on multiprocessor systems using the ability to simultaneously perform many actions that
are generated in the process of solving one or more tasks (one project). The main goal
of parallel computing is to reduce the time to solve the problem. The task of parallel
computing is to create a source of parallelism in the processes of solving problems in
order to achieve the most efficient use of multiprocessor calculations (getting a parallel
algorithm). Parallel work is work that allows you to do it at the same time (not necessarily
independently). A parallel algorithm is an algorithm that can be executed simultaneously
(not necessarily independently); an operation or set of operations to be performed at the
same time must be expressly or impliedly indicated.

Referred to in paragraph above, we analyze in detail the developed numerical algorithm
for finding coefficients 𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝 and find parts that can be parallelized from it.
1. This step is very simple, so there is no need to parallelize it.
2. At this stage, five differential equations are being solved, and what is important is that
the solutions of these 5 systems are not related to each other, which means that they can
be divided into at least 5 separate tasks and calculations can be carried out in parallel.
3. The system (18)-(20) consists of a system of 4 unknowns, 4 linear algebraic equations
and it is solved by Cramer’s method. To solve this system, 5 4x4 determinants are
calculated, and their calculation is independent, so this step can also be divided into 5
subproblems. It should be noted that the calculation of determinants of size 4x4 requires
a lot of resources, in fact, it is possible to calculate it in parallel. But we speed up
the calculation of determinants based on Python’s internal capabilities. We will give
information about this below.
4. This step is also very simple, so there is no need to parallelize it.
5. This step is also very simple, so there is no need to parallelize it.

Now, to make this algorithm more understandable, we will describe it in the form of
a block diagram.
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Figure 1 Algorithm for solving the problem without considering parallelization.
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Figure 2 Algorithm for solving the problem with consideration of parallelization

4 Results and discussion
In order to solve the inverse problem and to carry out the numerical experiments a

program developed in Matlab was created. As initial values, we take the following numeric
values of the parameters [9]: 𝐷𝐿 = 0.033 𝑐𝑚2/𝑠 = 3.3 · 10−6𝑚2/𝑠, 𝐿 = 32 𝑐𝑚 = 0.32𝑚,
𝛽𝑝 = 5.19ℎ−1 = 5.19

3600
𝑠−1 ≈ 1.4417 · 10−3 𝑠−1, 𝛽𝑎 = 9.48ℎ−1 = 9.48

3600
𝑠−1 ≈ 2.6333 · 10−3 𝑠−1,
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𝛽𝑑 = 29.2ℎ−1 = 29.2
3600

𝑠−1 ≈ 8.1111 · 10−3 𝑠−1, 𝑐0 = 6 𝑔/𝑙 = 6 𝑘𝑔/𝑚3, 𝑑𝑚 = 1.58 𝑔
𝑐𝑚3 =

= 1580 𝑘𝑔
𝑚3 , 𝑚 = 0.393.

First we solve problem (1)-(5) to prepare additional information (6) on the basis of
quasi-real experiment for solving the inverse problem. Results of quasi-real experiment
as values z (t𝑗) given in Fig.3.

0 1000 2000 3000 4000 5000
0
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0.015
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0.03

s

z
(t

)

Figure 3 Function 𝑧(𝑡)

Numerical calculations were carried out based on the above algorithm for solving the
inverse problem. The results of calculations are shown in Figures 4-11.
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Figure 4 Recovery of coefficients 𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝 around the equilibrium point with initial ap-
proximations close to exact values of given parameters
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Figure 4 shows how the coefficients recovered around the equilibrium point with initial
values near to the equilibrium point. Fig. 5 shows each coefficient recovery in a separate
plot. The calculation results show that all parameters have been restored with sufficient
accuracy. It took 6 up to 10 iterations to recover the coefficients with initial values near
to the equilibrium point (Fig. 4, 5). Figure 6 shows how the coefficients recovered around
the equilibrium point with initial values a little away from the equilibrium point. Figure
7 shows each coefficient recovery in a separate plot. The calculation results show that all
parameters have been restored with sufficient accuracy. It took 8 up to 20 iterations to
recover the coefficients with initial values slightly distant to the equilibrium point (Fig.
6, 7).
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Figure 5 Recovery of coefficients 𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝 with initial approximations close to exact values
of given parameters
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Figure 6 Recovery of coefficients 𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝 around the equilibrium point with initial ap-
proximations slightly distant from exact values of given parameters
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Figure 7 Recovery of coefficients 𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝 with initial approximations slightly distant from
exact values of given parameters
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Figure 9 Recovery of coefficients 𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝 with initial approximations sufficiently far from
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Figure 11 Recovery of coefficients 𝐷𝐿, 𝛽𝑎, 𝛽𝑑, 𝛽𝑝 at optimal values of 𝛼

Figure 8 presents the results of calculating parameters at remote initial approxima-
tions from the equilibrium point. In this parameters restored with a sufficient accuracy.
The calculation results show that when the initial approximations of the parameters are
sufficiently far from the exact values of given parameters, the first-order identification
method does not give good results, and the iterative process becomes divergent (Fig. 9).

So, we should improve the algorithm in order to get sufficient results. For a satisfac-
torily recovery of parameters at remote initial approximations we use the modified first
order method [18]. At each iteration layer, instead of the functional (14) we use is made
of the following functional:

Φ
(︀
𝛾𝑠+1

)︀
= Φ(𝛾𝑠) + 𝛼

(︀
𝛾𝑠+1 − 𝛾𝑠

)︀2
. (41)

Figure 10 shows the results of identification parameters with remote initial approx-
imations from the equilibrium point at various values of 𝛼. As can be seen from the
figure, with a remote initial approximation of parameters from the equilibrium point at
different values of the parameter 𝛼, parameters are restored with a sufficient accuracy.
The calculation results show (Fig. 10) that as the initial approximation moves away from
the equilibrium point, the required number of iterations increases. In this series of calcu-
lations, the value of the parameter 𝛼 = 0.05,is optimal. Therefore, in calculations with
remote initial data, this value of the parameter was used (Fig. 11).

An experiment on computer also, carried out with developed parallel algorithm. We
performed calculations only on four and eight core laptops. Using this algorithm allowed
us to save time by 1.7 times when using 4-core laptops, and 2.6 times when using 8-core
computers. It should be mentioned that in the system of differential equations (1)-(3) the
(2) and (3) differential equations can be solved by means of parallelization, because they
are not directly related to each other, that is, they are related to each other through the
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(1) equation of the system, so parallelization can be used to solve them as well. Similarly,
there are certain parallelization methods that can be used for solving the finite difference
method, but since We performed calculations only on four and eight core laptops we were
limited to the above parallelization algorithm in solving this problem.

5 Conclusion
A problem of identifying the parameters of a suspension filtration model within a

porous medium is addressed through an inverse problem, which is successfully solved us-
ing numerical methods. Supplementary data for resolving the inverse problem is acquired
through a quasi-real experiment involving the solution of the direct problem via the fi-
nite differences method. The resolution of the problem is achieved using the firs-order
identification method. Notably, it is observed that deviating the initial approximations
of the desired parameters from the equilibrium point leads to an increase in the number
of iterations. The iteration count ranges from six to twenty, contingent on the specific
choices of initial approximations. The study revealed that when the initial approximations
of parameters deviate significantly from their exact values, the first-order identification
method gives unsatisfactory results, leading to a divergent iterative process. In such in-
stances, a modified identification method incorporating regularization was employed to
successfully recover the parameters with sufficient accuracy. A parallel algorithm for the
learned problem also developed. It allowed to decrease the calculating time up to 2.6
times.
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ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ ИДЕНТИФИКАЦИИ
ПАРАМЕТРОВ МОДЕЛИ ФИЛЬТРАЦИИ СУСПЕНЗИИ В

ПОРИСТОЙ СРЕДЕ
1*Хужаёров Б.Х., 1Файзиев Б.М., 2Холияров Э.Ч.

*b.khuzhayorov@mail.ru
1Самаркандский государственный университет,

140104, Узбекистан, г. Самарканд, бул. Университетский, 15;
2Термезский университет экономики и сервиса,
Узбекистан, г. Термез, ул. Баркамол авлод, 43.

В статье исследована математическая модель фильтрации суспензии в пористой
среде, включающая уравнение баланса массы взвешенных частиц и кинетические
уравнения как необратимого, так и обратимого осаждения частиц. Была сформули-
рована и решена численно обратная задача для определения сразу четырех парамет-
ров модели. Четыре параметра, которые необходимо найти: коэффициент диффу-
зии в уравнении баланса массы, коэффициенты скорости осаждения в кинетических
уравнениях как активных, так и пассивных зон и коэффициент обратного уноса об-
ратимых осаждений. Для этой цели был использован метод идентификации первого
порядка. Результаты показывают, что когда начальные приближения близки к точ-
ке равновесия, параметры восстанавливаются за небольшое количество итераций.
При незначительном отклонении начальных приближений от точки равновесия ко-
личество итераций, необходимых для восстановления параметров, увеличивается,
но коэффициенты восстанавливаются с достаточно малой погрешностью. Установ-
лено, что при достаточном удалении начальных приближений параметров от точки
равновесия метод идентификации первого порядка не дает хороших результатов и
итерационный процесс становится расходящимся. В данном случае для восстанов-
ления параметров использовался модифицированный метод идентификации с ис-
пользованием регуляризации, и параметры были восстановлены с достаточной точ-
ностью. Учитывая, что при решении обратной задачи выполняется большой объем
вычислений, был предложен параллельный алгоритм решения этой задачи. Было
обнаружено, что программа, основанная на распараллеленном алгоритме, работает
значительно быстрее исходной программы.
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